நேர்ம மெய்யெண்கள்

கணிதத்தில் நேர்ம மெய்யெண்கள் (positive real numbers) கணம் என்பது, பூச்சியத்தைவிடப் பெரிய மெய்யெண்களடங்கிய கணமாகும். இது மெய்யெண்கள் கணத்தின் உட்கணம் ஆகும். இயல் எண்கள், நேர்ம முழு எண்கள், நேர்ம விகிதமுறு எண்கள், நேர்மவிகிதமுறா எண்கள் ஆகிய அனைத்தும் நேர்ம மெய்யெண்களில் அடங்கும். விகிதமுறா எண் வகையைச் சேர்ந்த விஞ்சிய எண்கள், மற்றும் π (3.14159265...) ஆகியவையும் நேர்ம மெய்யெண்களே. நேர்ம மெய்யெண்களுக்குச் சில எடுத்துக்காட்டுகள்: 5, 4/3, 8.6, √2, π(3.1415926535...)
"எதிர்மமில்லா மெய்யெண்கள் கணம்" (non-negative real numbers) என்பது நேர்ம மெய்யெண்களோடு சேர்த்து பூச்சியத்தையும் உள்ளடக்கியது: ஆகிய இரு குறியீடுகளும் மேலே தரப்பட்ட இரு கணங்களையும் குறிப்பதற்குக் குழப்பமாகப் பயன்படுத்தப்பட்டாலும், அல்லது என்ற குறியீடு கணத்தையும் அல்லது என்பது என்ற கணத்தையும் குறிப்பதற்குப் பரவலாகப் பயன்படுத்தப்படுகிறது. இது இயற்கணிதத்தில் பூச்சியத்தை விட்டுவிட்டு எழுதுவதற்கு விண்மீன் குறியீட்டைப் பயன்படுத்தும் வழக்கத்துடன் ஒத்திருப்பதால் வேறுபாட்டைப் புரிந்துகொள்ள உதவுகிறது.[1]

சிக்கலெண் தளத்தில் கணமானது நேர்ம மெய்யச்சினைக் குறிக்கிறது; ஒரு நேர் கிடைக்கதிராக வரையப்படுகிறது. சிக்கலெண்ணின் போலார் வடிவ உருவகிப்பிற்கு இக்கதிர் ஆதாரமாக எடுத்துக்கொள்ளப்படுகிறது. நேர்ம மெய்யெச்சானது () என்ற சிக்கலெண்களைக் குறிக்கிறது.
பண்புகள்
[தொகு]- நேர்ம மெய்யெண்களின் கணம் கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் ஆகிய அடிப்படை கணிதச் செயலிகளைப் பொறுத்து அடைவுப் பண்பு பெற்றுள்ளது.
- தரப்பட்டதொரு நேர்ம மெய்யெண் எனில் அதன் முழுஎண் அடுக்குகளாலான தொடர்வரிசை கீழ்க்கண்ட மூன்று விதங்களில் இருக்கும்:
- எனில் தொடர்வரிசையின் எல்லை பூச்சியமாகும்.
- எனில் தொடர்வரிசை மாறிலியாக இருக்கும்.
- எனில் தொடர்வரிசை வரம்பற்றதாக இருக்கும்.
குறியிடப்பட்ட எண்கள்
[தொகு]நேர்ம எண்கள், பூச்சியத்தை விடப் பெரியவை; எதிர்ம எண்கள் பூச்சியத்தை விடச் சிறிய எண்கள். எனவே பூச்சியத்தைத் தவிர மற்ற மெய்யெண்கள் எல்லாம், ஒன்று நேர்ம எண்ணாகவோ அல்லது எதிர்ம எண்ணாகவோ இருக்க வேண்டும். நேர்ம எண்கள் என்பதைக் காட்ட அந்த எண்களுக்கு முன் கூட்டல் குறியும் (+3), எதிர்மம் என்பதைக் காட்ட அந்தந்த எண்களுக்கு முன் கழித்தல் குறியும் (-3) இடப்படுகின்றன. பொதுவாக, நேர்ம எண்களை அவற்றுக்கு முன் கூட்டல் குறியின்றி எழுதுவது கணித வழமையாகும். பூச்சியத்திற்கு குறி இல்லை.
பூச்சியமானது, நேர்ம எண்ணோ அல்லது எதிர்ம எண்ணோ இல்லையென்பதால், ஒரு எண் பூச்சியமாகவோ அல்லது நேர்ம எண்ணாகவோ இருக்கும் என்பதைக் காட்டுவதற்கு, அந்த எண் ”எதிர்மமற்ற எண்” என்று குறிப்பிடப்படும். அதேபோல, ஒரு எண் பூச்சியமாகவோ அல்லது எதிர்ம எண்ணாகவோ இருக்கும் என்பதைக் காட்டுவதற்கு, அந்த எண் ”நேர்மமற்ற எண்” என்று குறிப்பிடப்படும்.
எண் கோடு
[தொகு]
நேர்ம எண்கள், எதிர்ம எண்கள், பூச்சியம் ஆகிய மூன்றுக்கும் இடையேயுள்ள தொடர்பு, ஒரு எண் கோட்டின் மூலம் காட்டப்படுகிறது. எண்கோட்டின் மீதமையும் ஒவ்வொரு புள்ளிக்கும் ஒத்ததொரு மெய்யெண் உண்டு. இக்கோட்டின் மீதுள்ள ஒவ்வொரு புள்ளியும் ஒரு மெய்யெண்ணைக் குறிக்கும். எண்கோட்டிற்கும் மெய்யெண் கணத்திற்குமிடையே ஒன்றுக்கு-ஒன்று தொடர்புள்ளது.[2]
எண் கோட்டின் நடுவில் பூச்சியமும், அதற்கு வலப்புறக் கதிரில் நேர்ம மெய்யெண்களும், இடப்புறக் கதிரில் எதிர்ம மெய்யெண்களும் இடம்பெறுகின்றன. மேலே தரப்பட்டுள்ள எண்கோட்டின் வரைபடத்தில் -9 முதல் 9 வரையிலான முழுஎண்களுக்கான புள்ளிகள் மட்டுமே காணப்பட்டாலும் இக் கோடு முடிவில்லாமல் இருபுறமும் நீண்டு அனைத்து மெய்யெண்களையும் குறிக்கும். எண்கோடு இரு சமச்சீரான இரு அரைப்பகுதிகளாக எண் சுழியால் பிரிக்கப்படுகிறது. சுழிக்கு இடப்புறமுள்ள பகுதி எதிர் எண்களையும், வலப்புறமுள்ள பகுதி நேர் எண்களையும் குறிக்கின்றன.
எந்தவொரு நேர்ம மெய்யெண்ணும் எந்தவொரு எதிர்ம மெய்யெண்ணையும்விடப் பெரியதாகும்.
- −8 < 5.2
- −5.2 < 8.
மேற்கோள்கள்
[தொகு]- ↑ "positive number in nLab". ncatlab.org. Retrieved 2020-08-11.
- ↑ Stewart, James B.; Redlin, Lothar; Watson, Saleem (2008). College Algebra (5th ed.). Brooks Cole. pp. 13–19. ISBN 0-495-56521-0.
நூலாதாரம்
[தொகு]- Kist, Joseph; Leetsma, Sanford (1970). "Additive semigroups of positive real numbers". Mathematische Annalen 188 (3): 214–218. doi:10.1007/BF01350237.