டெய்லர் தொடர்
கணிதத்தில் டெய்லர் தொடர் (Taylor series) ஒரு சார்பினை முடிவுறா உறுப்புகளின் தொடராகத் தருகிறது. தொடரின் உறுப்புகள் முறையே ஒரு குறிப்பிட்ட புள்ளியில் அச் சார்பின் தொடர்வகைக்கெழுக்களின் மதிப்புகளாக உள்ளன.
டெயிலர் தொடரின் கருத்துரு ஸ்காட்லாந்து கணிதவியலாளர் ஜேம்ஸ் கிரகரியால் கண்டுபிடிக்கப்பட்டு, 1715 இல் ஆங்கில கணிதவியலாளர் புரூக் டெய்லரால் முறையாக அறிமுகப்படுத்தப்பட்டது. டெய்லர் தொடர் பூச்சியத்தில் மையப்படுத்தப்பட்டால் அது மெக்லாரின் தொடர் என அழைக்கப்படுகிறது. 18 ஆம் நூற்றாண்டில் இந்த டெய்லர் தொடரின் சிறப்பு வகையைப் பெரிதும் பயன்படுத்திய ஸ்காட்லாந்து கணிதவியலாளர் காலின் மெக்லாரின் நினைவாக இப்பெயர் இடப்பட்டது.
ஒரு சார்பின் டெய்லர் தொடரிலுள்ள முடிவுறு எண்ணிக்கையான உறுப்புகளை எடுத்துக் கொண்டு அச் சார்பைத் தோராயப்படுத்தலாம். ஒரு சார்பின் டெய்லர் தொடரிலுள்ள முடிவுறு எண்ணிக்கையான உறுப்புகள் டெய்லர் பல்லுறுப்புக்கோவை எனப்படும். ஒரு சார்பின் டெய்லர் தொடர் அச் சார்பின் டெயிலர் பல்லுறுப்புக்கோவையின் எல்லை ஆகும் (அவ்வெல்லை காணமுடிந்தால்). ஒரு சார்பின் டெய்லர் தொடர் ஒவ்வொரு புள்ளியிலும் ஒருங்கும் தொடராக இருந்தாலும் கூட, அத் தொடரானது சார்புக்குச் சமமாக அமைவதில்லை. ஒரு திறந்த இடைவெளியில், தனது டெய்லர் தொடருக்குச் சமமாக அமையும் சார்பு பகுமுறைச் சார்பு என அழைக்கப்படும்.
வரையறை
[தொகு]ƒ(x) என்பது ஒரு மெய்யெண் அல்லது சிக்கலெண் மதிப்புச் சார்பு. a என்ற புள்ளியில் இச் சார்பு முடிவுறா தடவைகள் தொடர்ந்து வகையிடக் கூடியது எனில், இச் சார்பின் டெய்லர் தொடர் கீழ்க்கண்ட அடுக்குத் தொடராக அமையும்:
இதனைக் கூடுதல் குறியீட்டைப் பயன்படுத்திப் பின்வருமாறு தரலாம்:
- n! - n இன் தொடர் பெருக்கம்.
- ƒ (n)(a) - a புள்ளியில், சார்பு ƒ இன் n ஆம் வகைக்கெழு.
- ƒ இன் பூச்சிய வரிசை வகைக்கெழு ƒ மற்றும் (x − a)0 =1, 0! = 1.
- a = 0 எனில், இத் தொடர் மெக்லாரின் தொடர் எனப்படும்.
எடுத்துக்காட்டுகள்
[தொகு]ஒரு பல்லுறுப்புக்கோவையின் மெக்லாரின் தொடர் அதே பல்லுறுப்புக்கோவைதான்.
a = 0 இல் (1 − x)−1 இன் மெக்லாரின் தொடர் பின்வரும் பெருக்குத் தொடர் ஆகும்:
எனவே a = 1 இல் x−1 இன் டெயிலர் தொடர்:
மேலே தரப்பட்ட மெக்லாரின் தொடரைத் தொகையிட்டால் log(1 − x) இன் மெக்லாரின் தொடரைக் காணலாம் (இங்கு log என்பது இயல் மடக்கை):
இதன்படி, log(x) at a = 1 இல் log(x) இன் டெய்லர் தொடர்:
பொதுமைப்படுத்த a = x0 இல் log(x) இன் டெய்லர் தொடர்:
a = 0 இல், அடுக்குக்குறிச் சார்பு ex இன் டெய்லர் விரிவு:
மேற்கோள்கள்
[தொகு]- Abramowitz, Milton; Stegun, Irene A. (1970), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, Ninth printing
- Thomas, George B. Jr.; Finney, Ross L. (1996), Calculus and Analytic Geometry (9th ed.), Addison Wesley, பன்னாட்டுத் தரப்புத்தக எண் 0-201-53174-7
- Greenberg, Michael (1998), Advanced Engineering Mathematics (2nd ed.), Prentice Hall, பன்னாட்டுத் தரப்புத்தக எண் 0-13-321431-1
வெளி இணைப்புகள்
[தொகு]- Hazewinkel, Michiel, ed. (2001), "Taylor series", Encyclopedia of Mathematics, Springer, பன்னாட்டுத் தரப்புத்தக எண் 978-1556080104
- Weisstein, Eric W., "Taylor Series", MathWorld.
- Madhava of Sangamagramma பரணிடப்பட்டது 2010-04-18 at the வந்தவழி இயந்திரம்
- Taylor Series Representation Module by John H. Mathews
- "Discussion of the Parker-Sochacki Method பரணிடப்பட்டது 2005-12-02 at the வந்தவழி இயந்திரம்"
- Another Taylor visualisation பரணிடப்பட்டது 2007-06-05 at the வந்தவழி இயந்திரம் — where you can choose the point of the approximation and the number of derivatives
- Taylor series revisited for numerical methods at Numerical Methods for the STEM Undergraduate
- Cinderella 2: Taylor expansion
- Taylor series
- Inverse trigonometric functions Taylor series